conda env的使用and测试GPU
Conda 管理环境
1. 创建虚拟环境
conda create -n env_name python=3.6
#env_name: 虚拟环境名称
#jupyter,ipython环境
conda install ipykernel
conda install -n 环境名称 ipykernel
2. 激活虚拟环境
#Linux:
source activate env_name
#Windows:
activate env_name
3. 保存环境
#导出env环境安装的所有package
conda env export > environment.yaml
#使用environment.yml创建环境
conda env create -f environment.yaml
4. 关闭虚拟环境
#Linux:
source deactivate
#Windows:
deactivate
5. 列出环境
conda env list
6. 删除conda env环境
conda env remove -n env_name
python3测试GPU
- 创建torch环境
conda create --name python_38-pytorch_1.7.0 python=3.8
conda activate python_38-pytorch_1.7.0
- install torch
https://pytorch.org/get-started/locally/
import torch
flag = torch.cuda.is_available()
if flag:
print("CUDA可使用")
else:
print("CUDA不可用")
ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print("驱动为:",device)
print("GPU型号: ",torch.cuda.get_device_name(0))
pip install -r requirements.txt